

Calcium-Lead Interactions in Earthworms: Observations on *Lumbricus terrestris* L. Sampled from a Calcareous Abandoned Leadmine Site

Brian Morris and A. John Morgan*

Department of Zoology, University College, P.O. Box 78, Cardiff CFI IXL, Wales, United Kingdom

The accumulation of heavy metals has been measured in earthworms sampled from soils contaminated by: (a) atmospheric pollutants from various anthropogenic sources; (b) sludge application; (c) Pb- and spoil heaps associated with disused metalliferous mines (Ireland 1983). Lead is the metal most intensively studied, the available evidence suggests that its accumulation by earthworms endogenous (tissue) Ca. influenced by exogenous (soil) and Although the published literature is limited, it emerges that Pb-Ca be manifest at three distinguishable interactions may ecological/physiological levels. (1) Soil Ca tends to suppress Pb Andersen and Laursen Ireland 1979; accumulation (Andersen 1979; Observed species differences in Pb burdens may reflect (2) Ca metabolism of the fundamental differences in the (Ireland and Richards 1977; Andersen and Laursen 1982; Morgan and Morris 1982). Whilst this conclusion is in accord with inhibition of Pb transport by well-recognised vertebrates, the experimental supportive evidence for earthworms is (3) Tissue Pb accumulation results in an apparent parallel increase in tissue [Ca] (Ireland 1975; Andersen 1979). Again the and rests on Ireland's is fairly limited, observations on the earthworm Dendrobaena rubida sampled from a heavily Pb-polluted, calcium deficient soil with low pH.

The main purpose of the present study was to determine whether a positive Ca-Pb relationship exists in the tissues of L.terrestris. This species possesses well-developed Ca secretory/excretory glands (Morgan 1981), and may thus be able to homeostatically regulate tissue [Ca]. The worms were sampled from six different 'stations' across a heavily polluted disused Pb/Zn mine site, where the interstation [Ca] varied by as much as a factor of x10. This heterogeneous site, therefore, offered a good opportunity to study additional aspects of Ca-Pb interactions in an earthworm population under field conditions.

^{*} All correspondence to Dr AJ Morgan, Dept. Zoology, University College, PO Box 78, Cardiff CFI IXL, Wales, UK.

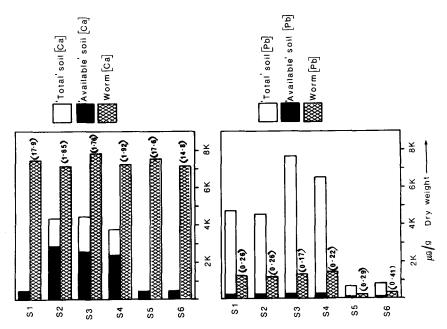


Figure 1. Comparison of the whole-body [Ca] and [Pb] in L.terrestris with soil [Ca] and [Pb] ('total' and 'available'). Mean values only are plotted (see Table 2 for S.E. and n values). Values in parentheses are concentration factors, i.e. worm [Ca]; soil [Ca] and worm [Pb]; soil [Pb]

MATERIALS AND MATERIALS

L.terrestris specimens were collected in November 1980 formalin extraction at a site known as Park Mine (Grid Ref. 047823) near Llantrisant, S.Wales. The workings of this mine, besides being in Triassic rocks, extended into Carboniferous limestone which overlies coal measures; lead sulphide (galena) and associated zinc sulphide (sphaelerite) were the main ores present. Work at the site was probably abandoned about 100 years ago, and the whole site has been completely covered by pasture across which runs a narrow strip of mixed beech, holly and elder Samples were taken at six stations situated on a woodland. longitudinal transect across the site: sampling stations 1 and 2 (S1, S2) - 'upper' pasture; S3 and S4 - woodland; S5 and S6 -'lower' (sloping) pasture.

Extracted worms were immediately washed in clean tap water for 2 minutes, transported to the laboratory, and their gut contents cleaned by maintenance on moistened filter paper (Whatman No.1) in a dark constant-temperature (10° C) room for 4 days. Filter paper was changed daily. The worms consumed the filter paper and were excreting clean paper 'casts' by the fourth day. Soils (0-10 cm depth samples) and worms were prepared for atomic absorption spectrophotometry (Pye/Unicam SP 2900) by a wetdigestion procedure as previously described (Morgan and Morris

1982). 'Available' soil metal concentrations were estimated by extraction in 0.5% (v/v) acetic acid. Data was expressed as Mean $\stackrel{+}{-}$ S.E. Differences between means were assessed wherever appropriate by a 2-tailed Student's t-test.

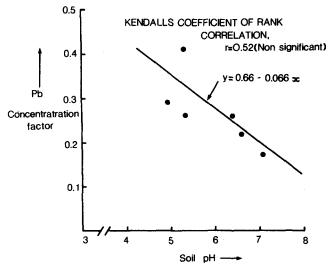


Figure 2. Plot of mean Pb concentration factors in L.terrestris against soil pH at the six sampling stations. The $\overline{\text{significance}}$ of the relationship between the two parameters was determined by Kendall's Rank correlation (r).

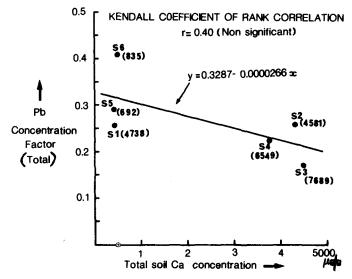


Figure 3. Plot of mean Pb concentration factors in L.terrestris against the mean soil [Ca] . Values in parentheses are the appropriate mean [Pb] at each station. Note that the correlation (Kendall's r) is poorer than that between Pb concentration factor and soil pH (Figure 2).

Table 1. Metal concentrations (ug/g dry weight) in soils*

		STATION NUMBER								
		S1	S2	S 3	S4	S5	s6			
[Pb]	Total	4738 - 499	4581 - 468	7689 - 351	6549 - 298	692 - 67	835 - 76			
	Extractable	227 + 7	228 - 16	258 - 37	256 - 48	102 +4	105 + 4			
	% **	4.8	5.0	3.4	3.9	14.7	12.6			
[Ca]	Total	417 - 71	4329 - 576	4460 + 682	369 + 1022	428 + 28	480 - 49			
	Extractable	377 - 64	2854 - 379	2526 - 203	2378 + 48	388 - 24	434 +44			
	% **	90.4	65.9	56.6	63.1	90.7	90.4			
	pH ***	5.3	6.4	7.1	6.6	4.9	5.3			

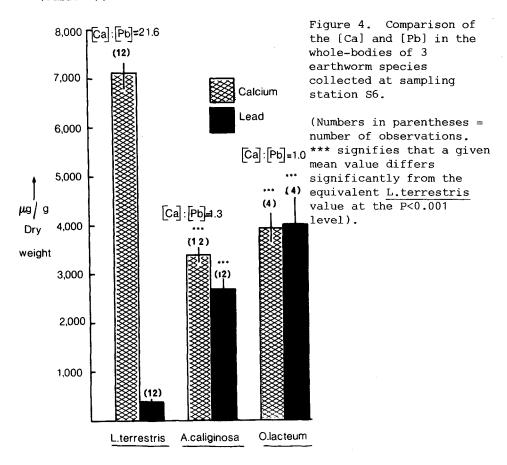
^{* 6} replicates in each case

Table 2. Metal concentrations (ug/g dry weight) in L.terrestris

	S1	S2	S 3	S4	S 5	s6
[Pb]	1221	1191	1312	1459	201	338
	+ 91	- 52	+134	- 241	⁺ 16	+39
	(30)	(10)	(10)	(10)	(10)	(12)
[Ca]	7467	7143	7840	7237	7563	7130
	- 168	+216	+ 337	+ 300	- 351	+ 253
	(30)	(10)	(10)	(10)	(10)	(12)

Numbers in parentheses = numbers of observations

RESULTS AND DISCUSSION


The analytical data for soils and <u>L.terrestris</u> are summarized in Tables 1 and 2, and graphically compared in Figure 1. The geochemistry of the site is a highly variable mosaic with soil [Ca] total ranging from 417 ug/g (S5) to 7689 ug/g (S3); and pH ranging from 4.9 (S5) to 7.1 (S3). The 0.5% acetic acid

^{** % =} $\frac{\text{mean amount extracted by 5% acetic acid}}{\text{mean total (i.e. analysed in HNO digest)}} \times 100\%$

mean total (i.e. analysed in HNO digest) x 100%

*** pH measured in 2:1 dry soil:deionized water slurry stirred for 1 hr

'available' fractions of both Ca and Pb appear to be pH dependent (Table 1).

A striking feature of these findings is that the L. terrestris tissues is maintained remarkably constant (Table Figure 1), with no significant differences (P > 0.05) despite the 10-fold variation in soil [Ca] across the site. In contrast, worm [Pb] generally reflected (albeit imprecisely) the soil [Pb] (Figure 1). Although Roberts and Johnson (1978) recorded a significant positive correlation between soil [Pb] and the [Pb] in L.terrestris, it is evident that specific soil physicochemical properties also affect the amount of accumulated by terrestrial organisms. For example, we found (Figure 2) that for a given soil [Pb] the worm [Pb] increased as Ma (1982), in a very detailed study of soil pH decreased. Allolobophora caliginosa, demonstrated that worm Pb burdens are determined primarily by soil [Pb] and soil pH, and also but to a lesser extent by the cation exchange capacity of soil. Figures 2 show that the Pb concentration factor (i.e. worm [Pb] did not exceed 0.41 (S6) at any one of sampling stations. There is no evidence to suggest that a

positive correlation exists between tissue [Pb] and [Ca] in this population of L.terrestris. Indeed, these worms are capable of regulating their endogenous [Ca] within fairly narrow limits, and quite independently of large variations in substrate [Ca] total + [Pb] total and also in whole-body [Pb].

The present observations contradict the positive correlation between [Pb] and [Ca] in worm tissue reported by Andersen (1979) and Andersen and Laursen (1982). These authors analyzed the earth-worms, L.terrestris, from a polluted road-side soil, and various Allolobophora species from sludge-ammended soils of fairly neutral pHs. However, their conclusions must be seriously questioned because they plotted together the analytical data for the different species derived from distinctly different sampling sites. Since L.terrestris has a significantly higher [Ca] than certain Allolobophora species (Figure 4; see also Piearce 1972), and since it was also sampled from an environment more heavily polluted with Pb than that from which Allolobophora was derived, the pooling of analytical data for the different species introduces an obvious bias in favour of a positive [Ca]-[Pb] correlation and cannot, therefore, be justified.

The definite positive correlation between tissue [Ca] and recorded by Ireland (1975) in D.rubida 'transplanted' relatively Pb-free soil to highly contaminated and acidic soil is readily interpreted and reconciled with the The Pb concentration factors observed in D.rubida 1975) and L.rubellus living in acidic soil (Ireland exceptionally high (2.4 and 2.7, respectively - see Ireland 1983, for other published values). The major subcellular compartment for Pb accumulation/ detoxification in earthworms are chloragosome granules in the chloragog tissue (Ireland Richards 1977; Morgan and Morris 1982). We propose that when soil [Pb] is high and pH is low (resulting in high concentration factors) the chloragosome compartment eventually saturates. further envisage that 'excess' Pb 'floods' into the chloragocytic cytoplasm, and may also be distributed at disproportionately high concentrations in other tissues and cells. If this occurs, then generalized gell-membrane damage would ensue, with a consequent influx of Ca²⁺ from extra-cellular fluids. Presumably the tissue [Pb] in L.terrestris, even at the most heavily contaminated stations (S3, S4) at Park mine (which also possessed the highest soil pHs), did not exceed the hypothetical Pb saturation level of the chloragosomes.

When the mean Pb concentration factors were plotted against mean [Ca] (Figure 3) there was a suggestion of a negative correlation. This could be interpreted to show that high soil [Ca] inhibits Pb accumulation by worms. Concentration factors must, however, be used and interpreted with some caution (Ma 1982; Ireland 1983). It is salutory that the highest Pb concentration factors (S5=0.29 and S6=0.41) were recorded at the stations with the lowest soil [Pb], and the lowest concentration factors (S3=0.17 and S4=0.22) at the stations with the highest

soil [Pb]. Ireland (1983) drew attention to two separate studies where 'anomalous' concentration factors >1 were observed. In both instances soil [Pb] was low. The present study cannot, therefore, contribute to the discussion of the competitive inhibitory role of soil Ca on Pb accumulation. A much more extensive systematic study, designed to separate the intimately-linked effects of soil [Ca] and pH for example (compare Figures 2 and 3), would be required to definitively answer this question.

two other earthworm species addition to L.terrestris, Ιn (A.caliginosa and Octolasion lacteum) were collected from S6 (Figure 4). Unlike L.terrestris, these worms are non-pigmented and they possess non-secretory calciferous glands (Piearce 1972). Less Ca is transported across the intestine of A.caliginosa compared to another Lumbricus species i.e. rubellus The present analytical data clearly show that whole-worm 1972). [Pb] is significantly higher in A.caliginosa and O.lacteum compared with L.terrestris (Figure 4). It is tempting to suggest that these differences are related to fundamental differences in the Ca metabolism of these worms; note that both the [Ca] and the [Ca]:[Pb] ratio are significantly higher in L. terrestris than in the other two species. Ecological differences, for example in food selection (Piearce 1978) and other resource and habitat partitioning strategies, cannot however be dismissed as minor influences on the relative bioavailabilities of specific metals to individual species. These and other ecophysiological factors are currently being investigated in our laboratory.

This study therefore confirms that biotic (endogenous) and abiotic (exogenous, geochemical) modulating interactions must receive serious attention in all studies that seek to use earthworms as biomonitors of Pb pollution and its consequences. This general statement can, of course, be extrapolated to include other metals and other organisms in different ecosystems.

Acknowledgements. We would like to thank Sabina Thompson for typing the manuscript and Vyv Williams for assistance with the illustrations.

REFERENCES

Andersen C (1979) Cadmium, lead and calcium content, number and biomass, in earthworms (Lumbricidae) from sewage sludge treated soil. Pedobiologia 19:309-319.

Andersen C, Laursen J (1982) Distribution of heavy metals in

Lumbricus terrestris, Aporrectodea longa and A.rosea measured
by atomic absorption and X-ray fluorescence spectrometry.

Pedobiologia 24:347-356.

Ireland MP (1975) Metal content of Dendrobaena rubida
 (Oligochaeta) in a base metal mining area. Oikos 26:74-79.

Ireland MP (1979) Metal accumulation by the earthworms <u>Lumbricus</u> rubellus, <u>Dendrobaena veneta</u> and <u>Eiseniella</u> tetraedra living in heavy metal polluted sites. Environ Pollut 19:201-206.

- Ireland MP (1983) Heavy metal uptake and tissue distribution in earthworms. In: JE Satchell (ed), Earthworm ecology. From Darwin to vermiculture. Chapman & Hall, London, p 247.
- Ireland MP, Richards, KS (1977) The occurrence and localization of heavy metals and glycogen in the earthworms

 Lumbricus rubellus and Dendrobaena rubida from a heavy metal site. Histochemistry 51:153-166.
- Ma W (1982) The influence of soil properties and worm-related factors on the concentration of heavy metals in earthworms. Pedobiologia 24:109-119.
- Morgan AJ (1981) A morphological and electron microprobe study of the inorganic composition of the mineralized secretory products of the calciferous gland and chloragogenous tissue of the earthworm, Lumbricus terrestris L. The distribution of injected strontium. Cell Tissue Res 220:829-844.
- Morgan AJ, Morris B (1982) The accumulation and intracellular compartmentation of cadmium, lead, zinc and calcium in two earthworm species (Dendrobaena rubida and Lumbricus rubellus) living in highly contaminated soil. Histochemistry 75:269-285.
- Piearce TG (1972) The calcium relations of selected Lumbricidae. J Anim Ecol 41:167-188.
- Piearce TG (1978) Gut contents of some lumbricid earthworms. Pedobiologia 18:153-157.
- Roberts RD, Johnson MS (1978) Dispersal of heavy metals from abandoned mine workings and their transference through terestrial food chains. Environ Pollut 16:293-310.

Received October 7, 1985; accepted October 21, 1985.